Synthesis, Crystal Structure and Magnetic Properties of the Complex Co[Me₂NC(S)NP(S)(OPr-*i*)₂]₂¹

D. A. Safin^a, M. Bolte^b, M. G. Babashkina^a, and A. Klein^a

^a Institut für Anorganische Chemie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany e-mail: damir.safin@ksu.ru

Received March 26, 2009

Abstract—The reaction of N-(diisopropoxyphosphorothioyl)-N-N-dimethylthiourea [Me₂NC(S)NHP(S)(OPr-i)₂, HL) potassium salt with Co(II) cation in aqueous ethanol gave the chelate complex Co(L-S,S')₂(CoL₂). The structure of the resulting compound was studied by means of IR spectroscopy, microanalysis, and X-ray analysis. The metal center was found to occur in a tetrahedral S₄ environment formed by the C=S and P=S sulfur atoms of two deprotonated ligands L. Magnetic properties of the complex CoL₂ were also studied.

DOI: 10.1134/S1070363210070078

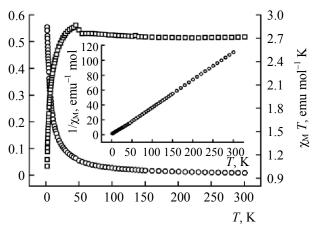
Acylamidophosphates and their thio analogs of the general formula $RC(X)NHP(Y)R'_2$ (X, Y = O, S) form fairly stable chelates with a series of double-charged metal ions, in particular, with Co(II) ions [1]. The presence of coordination-active (thio)carbonyl and (thio)phosphoryl groups and of a relatively acidic proton in molecules of N-(thio)phosphorylated (thio) ureas and (thio)amides predetermines the possibility of chelation through the sulfur and oxygen donor centers with formation of a stable six-membered chelate ring [2, 3].

Recent progress in the synthesis and characterization of metal phosphonate compounds has been driven by the need to understand their novel physical properties and their potential interesting magnetic, sensing, catalytic, and ion-exchange properties [6–10]. Amidophosphates RC(S)NHP(S)R'2 have long attracted attention of researchers due to their ability to form stable chelates with Group IB, IIB, and VIIIB transition metal cations. These compounds and their complexes exhibit antiviral activity [11].

The present work continues our previous studies on the structure and magnetic properties of Co(II) complexes with *N*-(thio)phosphorylthioureas [12–18]. As ligand we used *N*-(diisopropoxyphosphorothioyl)-*N*',*N*'-dimethylthiourea (HL). It was converted into

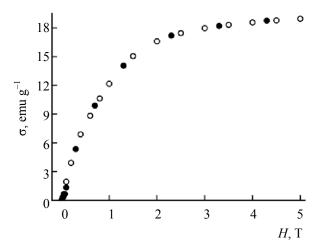
potassium salt KL which was brought into reaction with cobalt(II) nitrate in aqueous ethanol. The resulting coordination compound (CoL₂) was isolated as a crystalline solid that is soluble in most polar solvents.

The IR spectrum of CoL₂ contains an absorption band of the P=S group in anionic form L, which is displaced by 45 cm⁻¹ toward low frequencies relative to the corresponding band of parent ligand HL. A strong absorption band was also observed at 1540 cm⁻¹ due to the conjugated SCN fragment, while no band assignable to NH group was present. These findings indicated complex formation through the P=S groups in the deprotonated ligand. The presence of a strong broadened band in the region 993–1019 cm⁻¹ (POC) confirmed conservation of the thiophosphate fragment.


The variable-temperature magnetic susceptibility data for a crystalline sample of complex CoL_2 was measured in the temperature range from 1.9 to 300 K with an applied field of 5 T. The temperature dependences of the magnetic susceptibility χ_M , the reciprocal magnetic susceptibility χ_M^{-1} , and the product $\chi_M T$ are shown in Fig. 1. Complex CoL_2 revealed complicated magnetic behavior. Variable-temperature magnetic susceptibility of a powdered sample of CoL_2 showed a clear discontinuity near 50 K. In this case, $\chi_M T$ steadily increases upon cooling until $T_c = 50$ K. At lower temperatures, $\chi_M T$ sharply increases, reaching a maximum at about 45 K (Fig. 1). The high-temperature behavior of the magnetic susceptibility is consistent

^b Institut für Anorganische Chemie J.-W.-Goethe-Universität, Frankfurt/Main, Germany

¹ The text was submitted by the authors in English.


1264 SAFIN et al.

 $\chi_{\rm M}$, emu mol⁻¹

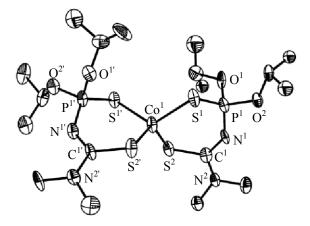


Fig. 1. Magnetic susceptibility χ_M (open circles) and the product $\chi_M T$ (open squares) plotted as a function of temperature for powder samples CoL_2 . The insets show the inverse magnetic susceptibility χ_M^{-1} .

with the presence of a ferromagnetic exchange between cobalt(II) atoms in two neighboring molecules. We suppose that this result agrees with a spin-canted ferromagnetic behavior [19, 20] and antiferromagnetic ordering below 45 K. The plot of $\chi_{\rm M}^{-1}$ versus T for CoL₂ revealed two linear regions on account of the presence of two structural phases. Fitting the data to the Curie–Weiss equation yields C = 2.70 emu mol⁻¹ and $\theta = 1.45$ K ($\chi_{\rm M}^{-1} = 0.371$ T - 0.5387; r = 1) for the temperature range 300–50 K and C = 3.07 emu mol⁻¹ and $\theta = -3.54$ K ($\chi_{\rm M}^{-1} = 0.3254$ T + 1.1518; r = 0.9999) for the temperature range 40–2 K.

Fig. 2. σ vs. H plot with the magnetic field increased (open circles) and decreased (full circles) at T = 2 K for complex CoL₂.

Fig. 3. Molecular structure of complex CoL₂ according to the X-ray diffraction data. Hydrogen atoms are not shown for clarity. Selected bond distances (Å) and angles (deg): $\text{Co}^1\text{-S}^1$ 2.337(6), $\text{Co}^1\text{-S}^1$ 2.330(5), $\text{Co}^1\text{-S}^2$ 2.289(6), $\text{Co}^1\text{-S}^2$ 2.295(5), $\text{P}^1\text{-O}^1$ 1.594(13), $\text{P}^1\text{-O}^2$ 1.573(13), $\text{P}^1\text{-N}^1$ 1.558 (19), $\text{P}^1\text{-S}^1$ 2.012(6), $\text{S}^1\text{-C}^1$ 1.78(2), $\text{N}^1\text{-C}^1$ 1.33(3), $\text{N}^2\text{-C}^1$ 1.31(3); $\text{S}^1\text{Co}^1\text{S}^1$ 121.6(2), $\text{S}^2\text{Co}^1\text{S}^1$ 108.02(19), $\text{S}^2\text{Co}^1\text{S}^1$ 96.98(19), $\text{S}^2\text{Co}^1\text{S}^2$ 125.3(3), $\text{S}^2\text{Co}^1\text{-S}^1$ 99.0(2), $\text{S}^2\text{Co}^1\text{S}^1$ 108.03(19), $\text{O}^2\text{P}^1\text{O}^1$ 101.4(7), $\text{O}^2\text{P}^1\text{S}^1$ 108.6(5), $\text{O}^1\text{P}^1\text{S}^1$ 110.7(6), $\text{N}^1\text{P}^1\text{O}^2$ 102.7(8), $\text{N}^1\text{P}^1\text{O}^1$ 115.9(8), $\text{N}^1\text{P}^1\text{S}^1$ 115.9(6), $\text{P}^1\text{S}^1\text{Co}^1$ 101.4(2), $\text{C}^1\text{S}^2\text{Co}^1$ 108.4(6), $\text{C}^1\text{N}^1\text{P}^1$ 136.6(16), $\text{N}^2\text{C}^1\text{N}^1$ 119.6(18), $\text{N}^2\text{C}^1\text{S}^2$ 116.9(15), $\text{N}^1\text{C}^1\text{S}^2$ 123.4(17).

Figure 2 shows the field strength dependence of σ for complex CoL_2 at T=2 K. In these measurements, the field was initially increased (light circles) and then decreased (dark circles). No differences were observed between the σ plots measured with increase or decrease of the magnetic field strength.

The molecular structure of complex CoL₂ in crystal is shown in Fig. 3; selected bond lengths and bond angles are also given. Complex CoL₂ is a spirocyclic chelate with a distorted tetrahedral CoS₄ coordination entity. The endocyclic angle SMS is reduced, while the exocyclic one is increased in comparison with an ideal tetrahedral angle of 109.5°. The six-membered CoSPNCS rings have a distorted *boat* conformation with planar PNCS fragment. The phosphorus atoms are in a distorted tetrahedral NO₂S environment.

In summary, a novel Co(II) complex with *N*-thiophosphorylated thiourea Me₂NC(S)NHP(S)(OPr-*i*) has been successfully synthesized. IR spectroscopy has shown that the thiourea in this complex acts as a 1,5-*S*,*S*'-ligand. The central cobalt(II) ion has a tetrahedral configuration. Interesting spin-canted magnetic behavior of CoL₂ should also be noted; it is related to the presence of methyl substituents and ligands coordinated to tetrahedral metal center, obviously without intermolecular hydrogen bonds.

EXPERIMENTAL

The IR spectra (Nujol) were recorded in the range 400–3600 cm⁻¹ using a Specord M-80 spectrometer. Magnetic susceptibility measurements for a polycrystalline sample of CoL₂ were performed on MPMS-5 Quantum Design instrument in the temperature range 1.9–300 K at a magnetic field strength of 0 to 5 T. Elemental analyses were performed on a Perkin–Elmer 2400 CHN microanalyzer.

Bis[N-(diisopropoxyphosphorothioyl)-N',N'-dimethylthiocarbamido-S,S'|cobalt(II) (CoL₂). A suspension of 0.852 g (3 mmol) of N-(diisopropoxyphosphorothioyl)-N',N'-dimethylthiourea (HL) in 20 ml of aqueous ethanol was mixed with a solution of 0.185 g (3.3 mmol) of potassium hydroxide in ethanol. An aqueous solution of 0.582 g (2 mmol) of Co(NO₃)₂·6H₂O was added dropwise under vigorous stirring to the resulting potassium salt. The mixture was stirred for 3 h at room temperature and left overnight. The resulting complex was extracted with methylene chloride, the extract was washed with water and dried over anhydrous MgSO₄, the solvent was removed under reduced pressure, and the residue was recrystallized from methylene chloride-n-hexane. Complex CoL₂ was isolated as green crystals, yield 0.685 g (73%), mp 84°C. IR spectrum, v, cm⁻¹: 596 (P=S); 993, 1019 (POC); 1540 (SCN). Found, %: C 34.43; H 6.51; N 8.87. C₁₈H₄₀CoN₄O₄P₂S₄. Calculated, %: C 34.55; H 6.44; N 8.95.

The X-ray diffraction data were collected on a STOE IPDS-II diffractometer with graphite-monochromatized MoK_{α} radiation generated by fine-focus X-ray tube operating at 50 kV and 40 mA. The images were indexed, integrated and scaled using the X-Area data reduction package [21]. Data were corrected for absorption using PLATON program [22]. The structure was solved by the direct method using SHELXS-97 program [23] and refined on F^2 with fullmatrix least-squares approximation using SHELXL-97 [24]. C₁₈H₄₀CoN₄O₄P₂S₄, M 625.65; triclinic crystals, space group P-1; unit cell parameters: a = 9.672(2), $b = 10.289(2), c = 16.678(5) \text{ Å}; \alpha = 72.18(2), \beta =$ 77.14(2), $\gamma = 78.02(2)^{\circ}$; $V = 1523.0(6) \text{ Å}^3$; Z = 2; $\rho = 1.364 \text{ g cm}^{-3}$; $\mu(\text{Mo}K_{\alpha}) = 0.972 \text{ mm}^{-1}$. Total of 13288 reflections were collected, 5346 of which were unique with $R_{\text{int}} = 0.3151$. Final divergence factors (all reflections): $R_1 = 0.2792$, $wR_2 = 0.5375$. The complete set of crystallographic data was deposited to the Cambridge Crystallographic Data Centre (entry no. CCDC

692850) and are available free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html or upon request by e-mail: deposit@ccdc.cam.ac.uk (12 Union Road, Cambridge CB2 1EZ, UK; fax: +441223336033).

REFERENCES

- 1. Botha, V.P., Ziegler, A., and Haiduc, I., *Inorg. Chim. Acta*, 1976, vol. 17, p. 13.
- Ly, T.Q. and Woollins, J.D., Coord. Chem. Rev., 1998, vol. 176, vol. 1, p. 451.
- 3. Zak, Z., Glowiak, T., and Hermann, E., *Z. Anorg. Allg. Chem.*, 1990, vol. 586, no. 1, p. 136.
- 4. Vermeulen, L.A. and Thompson, M.E., *Nature*, 1992, vol. 358, p. 656.
- 5. Zhang, B. and Clearfield, A., *J. Am. Chem. Soc.*, 1997, vol. 119, no. 11, p. 2751.
- 6. Zhu, J., Bu, X., Feng, P., and Stucky, G.D., *J. Am. Chem. Soc.*, 2000, vol. 122, no. 46, p. 11563.
- Subbiah, A., Pyle, D., Rowland, A., Huang, J., Narayanan, R.A., Thiyagarajan, P., Zon, J., and Clearfield, A., *J. Am. Chem. Soc.*, 2005, vol. 127, no. 31, p. 10826.
- 8. Cheetham, A.K., Ferey, G., and Loiseau, T., *Angew. Chem.*, 1999, vol. 111, no. 22, p. 3466.
- 9. Maillet, C., Janvier, P., Pipelier, M., Praveen, T., Andres, Y., and Bujoli, B., *Chem. Mater.*, 2001, vol. 13, no. 9, p. 2879.
- 10. Demadis, K.D., Katarachia, S.D., Raptis, R.G., Zhao, H., and Baran, P., *Cryst. Growth. Des.*, 2006, vol. 6, no. 4, p. 836.
- 11. Zabirov, N.G., Pozdeev, O.K., Shamsevaleev, F.M., Cherkasov, R.A., and Gilmanova, G.Kh., *Khim. Farm. Zh.*, 1989, vol. 23, no. 5, p. 600.
- 12. Sokolov, F.D., Safin, D.A., Zabirov, N.G., Yamalieva, L.N., Krivolapov, D.B., and Litvinov, I.A., *Mendeleev Commun.*, 2004, vol. 14, no. 2, p. 51.
- 13. Safin, D.A., Sokolov, F.D., Nöth, H., Babashkina, M.G., Gimadiev, T.R., Galezowska, J., and Kozlowski, H., *Polyhedron*, 2006, vol. 25, no. 17, p. 3330.
- Safin, D.A., Mlynarz, P., Hahn, F.E., Babashkina, M.G., Sokolov, F.D., Zabirov, N.G., Galezowska, J., and Kozlowski, H., Z. Anorg. Allg. Chem., 2007, vol. 633, no. 9, p. 1472.
- 15. Safin, D.A., Mlynarz, P., Sokolov, F.D., Kubiak, M., Hahn, F.E., Babashkina, M.G., Zabirov, N.G., Galezowska, J., and Kozlowski, H., *Z. Anorg. Allg. Chem.*, 2007, vol. 633, nos. 11–12, p. 2089.
- Safin, D.A., Sokolov, F.D., Gimadiev, T.R., Brusko, V.V., Babashkina, M.G., Chubukaeva, D.R., Krivolapov, D.B., and Litvinov, I.A., Z. Anorg. Allg. Chem., 2008, vol. 634, no. 5, p. 967.

1266 SAFIN et al.

17. Safin, D.A., Babashkina, M.G., Gimadiev, T.R., Bolte, M., Pinus, M.V., Krivolapov, D.B., and Litvinov, I.A., *Polyhedron*, 2008, vol. 27, no. 13, p. 2978.

- 18. Safin, D.A., Bolte, M., and Babashkina, M.G., *Transition Met. Chem.*, 2009, vol. 34, no. 1, p. 43.
- 19. Retting, S.J., Sanchez, V., Storr, A., Thompson, R.C., and Trotter, J., *J. Chem. Soc., Dalton Trans.*, 2000, no. 21, p. 3931.
- 20. Retting, S.J., Thompson, R.C., Trotter, J., and Xia, S., *Inorg. Chem.*, 1999, vol. 38, no. 6, p. 1360.
- 21. Stoe & Cie. X-Area. Area-Detector Control and Integration Software, Darmstadt, Germany: Stoe & Cie, 2001.
- 22. Spek, A.L., *J. Appl. Crystallogr.*, 2003, vol. 36, no. 1, p. 7.
- 23. Sheldrick, G.M., *Acta Crystallogr., Sect. A*, 1990, vol. 46, no. 6, p. 467.
- 24. Sheldrick, G.M., *Acta Crystallogr.*, *Sect. A*, 2008, vol. 64, no. 1, p. 112.